Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Date

نویسندگان

  • Jian Hao
  • K. Krishnamoorthy
چکیده

The problems of testing a normal covariance matrix and an interval estimation of generalized variance when the data are missing from subsets of components are considered. The likelihood ratio test statistic for testing the covariance matrix is equal to a specified matrix, and its asymptotic null distribution is derived when the data matrix is of a monotone pattern. The validity of the asymptotic null distribution and power analysis are performed using simulation. The problem of testing the normal mean vector and a covariance matrix equal to a given vector and matrix is also addressed. Further, an approximate confidence interval for the generalized variance is given. Numerical studies show that the proposed interval estimation procedure is satisfactory even for small samples. The results are illustrated using simulated data. 2001 Academic Press AMS 1991 subject classifications: 62F25; 62H99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferences on the Generalized Variance under Normality

Generalized variance is applied for determination of dispersion in a multivariate population and is a successful measure for concentration of multivariate data. In this article, we consider constructing confidence interval and testing the hypotheses about generalized variance in a multivariate normal distribution and give a computational approach. Simulation studies are performed to compare thi...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Model Based Estimation of Covariance Matrices with Applications to the Em-algorithm

When the minimization of mean square error (or variance) is a primary criterion for chosing an estimator of means or totals, then second moment estimates are often necessary too. Some examples of this are composite estimators where the component weights are functions of the component variances, generalized least squares estimators where an estimate of a covariance matrix is required, and the no...

متن کامل

Modelling of Correlated Ordinal Responses, by Using Multivariate Skew Probit with Different Types of Variance Covariance Structures

In this paper, a multivariate fundamental skew probit (MFSP) model is used to model correlated ordinal responses which are constructed from the multivariate fundamental skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To achieve an appropriate VC structure for reaching reliable statistical inferences, many types of variance covariance (VC) structures are considered ...

متن کامل

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001